Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(12)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38526109

RESUMO

Methoxymethanol (CH3OCH2OH) is a reactive C2 ether-alcohol that is formed by coupling events in both heterogeneous and homogeneous systems. It is found in complex reactive environments-for example those associated with catalytic reactors, combustion systems, and liquid-phase mixtures of oxygenates. Using tunable synchrotron-generated vacuum-ultraviolet photons between 10.0 and 11.5 eV, we report on the photoionization spectroscopy of methoxymethanol. We determine that the lowest-energy photoionization process is the dissociative ionization of methoxymethanol via H-atom loss to produce [C2H5O2]+, a fragment cation with a mass-to-charge ratio (m/z) = 61.029. We measure the appearance energy of this fragment ion to be 10.24 ± 0.05 eV. The parent cation is not detected in the energy range examined. To elucidate the origin of the m/z = 61.029 (C2H5O2) fragment, we used automated electronic structure calculations to identify key stationary points on the cation potential energy surface and compute conformer-specific microcanonical rate coefficients for the important unimolecular processes. The calculated H-atom dissociation pathway results in a [C2H5O2]+ fragment appearance at 10.21 eV, in excellent agreement with experimental results.

2.
Ecol Evol ; 14(2): e10884, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38343575

RESUMO

Differences in the number of alien plant species in different locations may reflect climatic and other controls that similarly affect native species and/or propagule pressure accompanied with delayed spread from the point of introduction. We set out to examine these alternatives for Himalayan plants, in a phylogenetic framework. We build a database of alien plant distributions for the Himalaya. Focusing on the well-documented regions of Jammu & Kashmir (west) and Bhutan (east) we compare alien and native species for (1) richness patterns, (2) degree of phylogenetic clustering, (3) the extent to which species-poor regions are subsets of species-rich regions and (4) continental and climatic affinities/source. We document 1470 alien species (at least 600 naturalised), which comprise ~14% of the vascular plants known from the Himalaya. Alien plant species with tropical affinities decline in richness with elevation and species at high elevations form a subset of those at lower elevations, supporting location of introduction as an important driver of alien plant richness patterns. Separately, elevations which are especially rich in native plant species are also rich in alien plant species, suggesting an important role for climate (high productivity) in determining both native and alien richness. We find no support for the proposition that variance in human disturbance or numbers of native species correlate with alien distributions. Results imply an ongoing expansion of alien species from low elevation sources, some of which are highly invasive.

3.
Am Nat ; 200(4): 518-531, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36150205

RESUMO

AbstractDespite widespread interest in the evolution and implications of monogamy across taxa, less attention-especially theoretical-has been paid toward understanding the evolution of divorce (ending a socially monogamous pairing to find a new partner). Here, we develop a model of the evolution of divorce by females in a heterogeneous environment, where females assess territory quality as a result of their breeding success. Divorce results in females leaving poor territories disproportionally more often than good territories, while death of a partner occurs independent of territory quality, giving an advantage to divorce. Increasing environmental heterogeneity, a decreasing benefit of pair experience, and moderate survival rates favor the evolution of higher divorce rates, even in the absence of variance in individual quality and knowledge of available territories. Imperfect information about territory quality constrains the evolution of divorce, typically favoring divorce strategies that remain faithful to one's partner whenever successful reproduction occurs. Our model shows how feedbacks between divorce, widowhood, and the availability of territories are intricately linked in determining the evolutionary advantage of divorce. We detail testable predictions about populations that should be expected to divorce at high rates.


Assuntos
Divórcio , Viuvez , Feminino , Humanos , Casamento , Reprodução
4.
Am Nat ; 200(3): 316-329, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35977783

RESUMO

AbstractElevational ranges within many taxa are greater in the north temperate region than the tropics. Two hypotheses to explain the pattern are, first, that large elevational ranges in the temperate region arise because species have evolved broad tolerance curves in response to seasonality and, second, that a low diversification rate in the temperate region (speciation minus extinction) has led to relatively few species, each of which occupies a large elevational range in the absence of competitors (character release). We build a quantitative genetic model of selection on a phenotypic trait, whereby increased tolerance is modeled as arising from plasticity in the trait. We show that broad tolerances result in evolution of large elevational ranges because they induce shallower genotypic clines and hence reduced maladaptive gene flow. The evolution of large elevational ranges results in relatively few competing species arranged along the elevational gradient at a species carrying capacity. In such saturated communities, species have much elevational overlap. In contrast, in similar-sized communities that could accommodate many more species, the resulting character release is associated with smaller elevational overlaps. Empirical assessment of these predictions should contribute to assessing any role for ecological limits in driving the latitudinal diversity gradient in species richness.


Assuntos
Altitude , Biodiversidade
5.
Mol Ecol ; 31(9): 2625-2643, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35253305

RESUMO

Colonization of a novel environment by a few individuals can lead to rapid evolutionary change, yet there is scarce evidence of the relative contributions of neutral and selective factors in promoting divergence during the early stages of colonization. Here we explore the role of neutral and selective forces in the divergence of a unique urban population of the dark-eyed junco (Junco hyemalis), which became established on the campus of the University of California at San Diego (UCSD) in the early 1980s. Previous studies based on microsatellite loci documented significant genetic differentiation of the urban population as well as divergence in phenotypic traits relative to nearby montane populations, yet the geographical origin of the colonization and the contributing factors remained uncertain. Our genome-wide single nucleotide polymorphism data set confirmed the marked genetic differentiation of the UCSD population, and we identified the coastal subspecies pinosus from central California as its sister group instead of the neighbouring mountain population. Demographic inference recovered a separation from pinosus as recent as 20-32 generations ago after a strong bottleneck, suggesting a role for drift in genetic differentiation. However, we also found significant associations between habitat variables and genome-wide variants linked to functional genes, some of which have been reported as potentially adaptive in birds inhabiting modified environments. These results suggest that the interplay between founder events and selection may result in rapid shifts in neutral and adaptive loci across the genome, and reveal the UCSD junco population as a case of contemporary evolutionary divergence in an anthropogenic environment.


Assuntos
Passeriformes , Aves Canoras , Animais , Evolução Biológica , Deriva Genética , Genética Populacional , Fenótipo , Aves Canoras/genética
6.
Glob Ecol Biogeogr ; 30(3): 685-696, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33776580

RESUMO

AIM: Biogeographical regions (realms) reflect patterns of co-distributed species (biotas) across space. Their boundaries are set by dispersal barriers and difficulties of establishment in new locations. We extend new methods to assess these two contributions by quantifying the degree to which realms intergrade across geographical space and the contributions of individual species to the delineation of those realms. As our example, we focus on Wallace's Line, the most enigmatic partitioning of the world's faunas, where climate is thought to have little effect and the majority of dispersal barriers are short water gaps. LOCATION: Indo-Pacific. TIME PERIOD: Present day. MAJOR TAXA STUDIED: Birds and mammals. METHODS: Terrestrial bird and mammal assemblages were established in 1-degree map cells using range maps. Assemblage structure was modelled using latent Dirichlet allocation, a continuous clustering method that simultaneously establishes the likely partitioning of species into biotas and the contribution of biotas to each map cell. Phylogenetic trees were used to assess the contribution of deep historical processes. Spatial segregation between biotas was evaluated across time and space in comparison with numerous hard realm boundaries drawn by various workers. RESULTS: We demonstrate that the strong turnover between biotas coincides with the north-western extent of the region not connected to the mainland during the Pleistocene, although the Philippines contains mixed contributions. At deeper taxonomic levels, Sulawesi and the Philippines shift to primarily Asian affinities, resulting from transgressions of a few Asian-derived lineages across the line. The partitioning of biotas sometimes produces fragmented regions that reflect habitat. Differences in partitions between birds and mammals reflect differences in dispersal ability. MAIN CONCLUSIONS: Permanent water barriers have selected for a dispersive archipelago fauna, excluded by an incumbent continental fauna on the Sunda shelf. Deep history, such as plate movements, is relatively unimportant in setting boundaries. The analysis implies a temporally dynamic interaction between a species' intrinsic dispersal ability, physiographic barriers, and recent climate change in the genesis of Earth's biotas.

7.
Anim Behav ; 170: 33-41, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33208979

RESUMO

Environmental changes caused by urbanization and noise pollution can have profound effects on acoustic communication. Many organisms use higher sound frequencies in urban environments with low-frequency noise, but the developmental and evolutionary mechanisms underlying these shifts are generally unknown. We used a common garden experiment to ask whether changes in minimum song frequency observed 30 years after a songbird colonized an urban environment are a consequence of behavioural flexibility. We captured male juvenile dark-eyed juncos, Junco hyemalis thurberi, from two populations (urban and mountain) soon after they reached independence (aged 25-40 days), raised them in identical indoor aviaries and studied their songs at an age of 3 years. We found that the large population difference in minimum frequency observed in the field persisted undiminished in the common garden despite the absence of noise. We also found some song sharing between the common garden and natal field populations, indicating that early song memorization before capture could contribute to the persistent song differences in adulthood. These results are the first to show that frequency shifts in urban birdsong are maintained in the absence of noise by genetic evolution and/or early life experiences.

8.
Ecol Evol ; 10(10): 4280-4290, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32489596

RESUMO

Competitive interactions between distantly related clades could cause complementary diversity patterns of these clades over large spatial scales. One such example might be ants and birds in the eastern Himalaya; ants are very common at low elevations but almost absent at mid-elevations where the abundance of other arthropods and insectivorous bird diversity peaks. Here, we ask if ants at low elevations could compete with birds for arthropod prey. Specifically, we studied the impact of the Asian weaver ant (Oecophylla smaragdina), a common aggressive ant at low elevations. Diet analysis using molecular methods demonstrate extensive diet overlap between weaver ants and songbirds at both low and mid-elevations. Trees without weaver ants have greater non-ant arthropod abundance and leaf damage. Experimental removal of weaver ants results in an increase in the abundance of non-ant arthropods. Notably, numbers of Coleoptera and Lepidoptera were most affected by removal experiments and were prominent components of both bird and weaver ant diets. Our results suggest that songbirds and weaver ants might potentially compete with each other for arthropod prey at low elevations, thereby contributing to lower insectivorous bird diversity at low elevations in eastern Himalaya. Competition with ants may shape vertebrate diversity patterns across broad biodiversity gradients.

9.
Am Nat ; 195(5): 802-817, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32364787

RESUMO

Variation in species richness across environmental gradients results from a combination of historical nonequilibrium processes (time, speciation, extinction) and present-day differences in environmental carrying capacities (i.e., ecological limits affected by species interactions and the abundance and diversity of resources). In a study of bird richness along the subtropical east Himalayan elevational gradient, we test the prediction that species richness patterns are consistent with ecological limits using data on morphology, phylogeny, elevational distribution, and arthropod resources. Species richness peaks at midelevations. Occupied morphological volume is roughly constant from low elevations to midelevations, implying that more species are packed into the same space at midelevations compared with low elevations. However, variance in beak length and differences in beak length between close relatives decline with elevation, which is a consequence of the addition of many small insectivores at midelevations. These patterns are predicted from resource distributions: arthropod size diversity declines from low elevations to midelevations, largely because many more small insects are present at midelevations. Weak correlations of species mean morphological traits with elevation also match predictions based on resources and habitats. Elevational transects in the tropical Andes, New Guinea, and Tanzania similarly show declines in mean arthropod size and mean beak length and, in these cases, likely contribute to declining numbers of insectivorous bird species richness along these gradients. The results imply that conditions for ecological limits are met, although historical nonequilibrium processes are likely to also contribute to the pattern of species richness.


Assuntos
Altitude , Aves/fisiologia , Ecossistema , Animais , Butão , Biodiversidade , Aves/classificação , Índia
10.
Proc Natl Acad Sci U S A ; 116(46): 23225-23231, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31611370

RESUMO

In many species that form pair bonds, males display to their mate after pair formation. These displays elevate the female's investment into the brood. This is a form of cooperation because without the display, female investment is reduced to levels that are suboptimal for both sexes. The presence of such displays is paradoxical as in their absence the male should be able to invest extra resources directly into offspring, to the benefit of both sexes. We consider that the origin of these displays lies in the exploitation of preexisting perceptual biases which increase female investment beyond that which is optimal for her, initially resulting in a sexual conflict. We use a combined population genetic and quantitative genetic model to show how this conflict becomes resolved into sexual cooperation. A cooperative outcome is most likely when perceptual biases are under selection pressures in other contexts (e.g., detection of predators, prey, or conspecifics), but this is not required. Cooperation between pair members can regularly evolve even when this provides no net advantage to the pair and when the display itself reduces a male's contributions to raising the brood. The findings account for many interactions between the sexes that have been difficult to explain in the context of sexual selection.


Assuntos
Evolução Biológica , Tamanho da Ninhada/genética , Modelos Genéticos , Seleção Genética , Comportamento Sexual Animal , Animais , Feminino , Fertilidade , Masculino
11.
PLoS Biol ; 17(10): e3000478, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31639139

RESUMO

Genetic data indicate differences in speciation rate across latitudes, but underlying causes have been difficult to assess because a critical phase of the speciation process is initiated in allopatry, in which, by definition, individuals from different taxa do not interact. We conducted song playback experiments between 109 related pairs of mostly allopatric bird species or subspecies in Amazonia and North America to compare the rate of evolution of male discrimination of songs. Relative to local controls, the number of flyovers and approach to the speaker were higher in Amazonia. We estimate that responses to songs of relatives are being lost about 6 times more slowly in Amazonia than in North America. The slow loss of response holds even after accounting for differences in song frequency and song length. Amazonian species with year-round territories are losing aggressive responses especially slowly. We suggest the presence of many species and extensive interspecific territoriality favors recognition of songs sung by sympatric heterospecifics, which results in a broader window of recognition and hence an ongoing response to novel similar songs. These aggressive responses should slow the establishment of sympatry between recently diverged forms. If male responses to novel allopatric taxa reflect female responses, then premating reproductive isolation is also evolving more slowly in Amazonia. The findings are consistent with previously demonstrated slower recent rates of expansion of sister taxa into sympatry, slower rates of evolution of traits important for premating isolation, and slower rates of speciation in general in Amazonia than in temperate North America.


Assuntos
Especiação Genética , Filogenia , Reprodução/genética , Aves Canoras/classificação , Vocalização Animal/fisiologia , Animais , Brasil , Canadá , Feminino , Masculino , Peru , Filogeografia , Aves Canoras/genética , Simpatria , Estados Unidos , Gravação em Vídeo
12.
Nat Commun ; 10(1): 2646, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31201312

RESUMO

Many models to explain the differences in the flora and fauna of tropical and temperate regions assume that whole clades are restricted to the tropics. We develop methods to assess the extent to which biotas are geographically discrete, and find that transition zones between regions occupied by tropical-associated or temperate-associated biotas are often narrow, suggesting a role for freezing temperatures in partitioning global biotas. Across the steepest tropical-temperate gradient in the world, that of the Himalaya, bird communities below and above the freezing line are largely populated by different tropical and temperate biotas with links to India and Southeast Asia, or to China respectively. The importance of the freezing line is retained when clades rather than species are considered, reflecting confinement of different clades to one or another climate zone. The reality of the sharp tropical-temperate boundary adds credence to the argument that exceptional species richness in the tropics reflects species accumulation over time, with limited transgressions of species and clades into the temperate.


Assuntos
Distribuição Animal/fisiologia , Aves/fisiologia , Modelos Biológicos , Clima Tropical , Animais , Sudeste Asiático , Biodiversidade , China , Florestas , Índia , Temperatura
13.
Ecology ; 100(1): e02548, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30601575

RESUMO

Along elevational gradients, species richness often peaks at intermediate elevations and not the base. Here we refine and test eight hypotheses to evaluate causes of a richness peak in trees of the eastern Himalaya. In the field, we enumerated trees in 50 plots of size 0.1 ha each at eight zones along an elevational gradient and compared richness patterns with interpolation of elevational ranges of species from a thorough review of literature, including floras from the plains of India. The maximum number of species peaks at similar elevations in the two data sets (at 500 m in the field sampling and between 500 m and 1,000 m in range interpolation); concordance between the methods implies that statistical artefacts are unlikely to explain the peak in the data. We reject most hypotheses (e.g., area, speciation rate, mixing of distinct floras). We find support for a model in which climate (actual evapotranspiration [AET] or its correlates) sets both the number of species and each species optimum, coupled with a geometric constraint. We consider that AET declines with elevation, but an abrupt change in the association of AET with geographical distance into the plains means that the location of highest AET, at the base of the mountain, receives range overlaps from fewer species than the location just above the base. We formalize this explanation with a mathematical model to show how this can generate the observed low-elevation richness peak.


Assuntos
Biodiversidade , Árvores , Altitude , Índia , Especificidade da Espécie
14.
Mol Ecol ; 28(6): 1246-1262, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30230092

RESUMO

Across hybrid zones, the sex chromosomes are often more strongly differentiated than the autosomes. This is regularly attributed to the greater frequency of reproductive incompatibilities accumulating on sex chromosomes and their exposure in the heterogametic sex. Working within an avian hybrid zone, we explore the possibility that chromosome inversions differentially accumulate on the Z chromosome compared to the autosomes and thereby contribute to Z chromosome differentiation. We analyse the northern Australian hybrid zone between two subspecies of the long-tailed finch (Poephila acuticauda), first described based on differences in bill colour, using reduced-representation genomic sequencing for 293 individuals over a 1,530-km transect. Autosomal differentiation between subspecies is minimal. In contrast, 75% of the Z chromosome is highly differentiated and shows a steep genomic cline, which is displaced 350 km to the west of the cline in bill colour. Differentiation is associated with two or more putative chromosomal inversions, each predominating in one subspecies. If inversions reduce recombination between hybrid incompatibilities, they are selectively favoured and should therefore accumulate in hybrid zones. We argue that this predisposes inversions to differentially accumulate on the Z chromosome. One genomic region affecting bill colour is on the Z, but the main candidates are on chromosome 8. This and the displacement of the bill colour and Z chromosome cline centres suggest that bill colour has not strongly contributed to inversion accumulation. Based on cline width, however, the Z chromosome and bill colour both contribute to reproductive isolation established between this pair of subspecies.


Assuntos
Especiação Genética , Genômica , Passeriformes/genética , Isolamento Reprodutivo , Animais , Genoma , Hibridização Genética , Reprodução/genética , Reprodução/fisiologia , Cromossomos Sexuais/genética
15.
Am Nat ; 192(4): 401-414, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30205027

RESUMO

Explaining why individuals participate in risky group behaviors has been a long-term challenge. We experimentally studied the formation of groups of birds (mobs) that aggressively confront predators and avian nest parasites and developed a theoretical model to evaluate the conditions under which mobs arise. We presented taxidermied mounts of predators on adult birds (hawks and owls) and of nest threats (crows and cuckoos) at different distances to nests of Phylloscopus warblers. Even when alone, birds are aggressive toward predators of adult birds, both at and away from their nests. By contrast, birds aggressively confront nest threats alone only when they have a nest nearby. However, strong initial responses by nest owners lead individuals without nearby nests to increase their responses, thereby generating a mob. Building on these findings, we derive the conditions in which individuals are incentivized to invest more when joining a high-gain individual compared to when acting alone. Strong responses of high-gain individuals acting alone tend to reduce the investments of other high-gain individuals that subsequently join. However, individuals that benefit sufficiently little from acting alone increase their investments when joining a high-gain individual and can even be sufficiently incentivized to join in when they would otherwise not act alone. Together, these results suggest an important role for key individuals in the generation of some group behaviors.


Assuntos
Comportamento de Nidação , Comportamento Predatório , Comportamento Social , Aves Canoras/fisiologia , Animais , Comportamento Animal , Comportamento Cooperativo , Feminino , Masculino
16.
Trends Ecol Evol ; 33(8): 574-576, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29807840

RESUMO

The remarkable diversity of color in nature remains largely unexplained. Recent studies on birds show how historical reconstructions, the identification of genes affecting color differences, and an increased understanding of the underlying developmental mechanisms are helping to explain why species are the color they are.


Assuntos
Evolução Biológica , Aves/genética , Visão de Cores , Adaptação Biológica/genética , Animais , Aves/classificação , Cor , Plumas/anatomia & histologia , Variação Genética , Pigmentação/genética
17.
Nat Ecol Evol ; 1(10): 1526-1534, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29185507

RESUMO

Chromosomal inversions evolve frequently but the reasons for this remain unclear. We used cytological descriptions of 411 species of passerine birds to identify large pericentric inversion differences between species, based on the position of the centromere. Within 81 small clades comprising 284 of the species, we found 319 differences on the 9 largest autosomes combined, 56 on the Z chromosome, and 55 on the W chromosome. We also identified inversions present within 32 species. Using a new fossil-calibrated phylogeny, we examined the phylogenetic, demographic and genomic context in which these inversions have evolved. The number of inversion differences between closely related species is consistently predicted by whether the ranges of species overlap, even when time is controlled for as far as is possible. Fixation rates vary across the autosomes, but inversions are more likely to be fixed on the Z chromosome than the average autosome. Variable mutagenic input alone (estimated by chromosome size, map length, GC content or repeat density) cannot explain the differences between chromosomes in the number of inversions fixed. Together, these results support a model in which inversions increase because of their effects on recombination suppression in the face of hybridization. Other factors associated with hybridization may also contribute, including the possibility that inversions contain incompatibility alleles, making taxa less likely to collapse following secondary contact.


Assuntos
Distribuição Animal , Inversão Cromossômica , Cromossomos/genética , Genoma , Passeriformes/fisiologia , Animais , Centrômero/genética , Demografia , Genômica , Passeriformes/genética , Filogenia , Cromossomos Sexuais/genética , Simpatria
18.
Trends Ecol Evol ; 32(11): 810-813, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28939256

RESUMO

Motion detection in humans is based on luminance differences, now shown likely to be processed by a specialized set of cone cells, separate from the cone cells that process color. Humans appear to have evolved a mechanism analogous to that proposed for the double cones of other vertebrates, lost as vision simplified in our nocturnal ancestors.


Assuntos
Evolução Biológica , Percepção de Movimento/fisiologia , Retina/fisiologia , Células Fotorreceptoras Retinianas Cones , Animais , Visão de Cores , Humanos , Vertebrados , Percepção Visual
19.
Am Nat ; 190(2): 157-170, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28731791

RESUMO

Colors often appear to differ in arbitrary ways among related species. However, a fraction of color diversity may be explained because some signals are more easily perceived in one environment rather than another. Models show that not only signals but also the perception of signals should regularly evolve in response to different environments, whether these primarily involve detection of conspecifics or detection of predators and prey. Thus, a deeper understanding of how perception of color correlates with environmental attributes should help generate more predictive models of color divergence. Here, I briefly review our understanding of color vision in vertebrates. Then I focus on opsin spectral tuning and opsin expression, two traits involved in color perception that have become amenable to study. I ask how opsin tuning is correlated with ecological differences, notably the light environment, and how this potentially affects perception of conspecific colors. Although opsin tuning appears to evolve slowly, opsin expression levels are more evolutionarily labile but have been difficult to connect to color perception. The challenge going forward will be to identify how physiological differences involved in color vision, such as opsin expression levels, translate into perceptual differences, the selection pressures that have driven those differences, and ultimately how this may drive evolution of conspecific colors.


Assuntos
Evolução Biológica , Visão de Cores , Opsinas de Bastonetes/fisiologia , Animais , Cor , Percepção de Cores , Meio Ambiente , Modelos Teóricos , Opsinas
20.
Proc Biol Sci ; 283(1830)2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27147094

RESUMO

Many marine and terrestrial clades show similar latitudinal gradients in species richness, but opposite gradients in range size-on land, ranges are the smallest in the tropics, whereas in the sea, ranges are the largest in the tropics. Therefore, richness gradients in marine and terrestrial systems do not arise from a shared latitudinal arrangement of species range sizes. Comparing terrestrial birds and marine bivalves, we find that gradients in range size are concordant at the level of genera. Here, both groups show a nested pattern in which narrow-ranging genera are confined to the tropics and broad-ranging genera extend across much of the gradient. We find that (i) genus range size and its variation with latitude is closely associated with per-genus species richness and (ii) broad-ranging genera contain more species both within and outside of the tropics when compared with tropical- or temperate-only genera. Within-genus species diversification thus promotes genus expansion to novel latitudes. Despite underlying differences in the species range-size gradients, species-rich genera are more likely to produce a descendant that extends its range relative to the ancestor's range. These results unify species richness gradients with those of genera, implying that birds and bivalves share similar latitudinal dynamics in net species diversification.


Assuntos
Aves , Bivalves , Ecossistema , Animais , Oceano Atlântico , Biodiversidade , Modelos Biológicos , Oceano Pacífico , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...